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Abstract— Effective digital courseware should be easy to 
implement and integrate into instructional plans, saving teachers 
time and helping them support their students’ learning needs. It 
should also not only enable students to achieve explicit learning 
objectives but also accelerate the pace at which they do so. This 
paper highlights the advantage of using Feature Selection 
techniques and Associative rule mining to get insightful 
knowledge from the log data from the Learning Management 
System (Moodle). The Machine Learning approach can be 
objectively deployed to obtain a predictive relationship and 
behavioral aspects that permits mapping the interaction 
behaviour of students with their course outcome. The knowledge 
discovered could immensely assist in evaluating and validating 
the various learning tools and activities within the course, thus, 
laying the groundwork for a more effective learning process. It is 
hoped that such knowledge would result in more effective 
courseware that provides for a rich, compelling, and interactive 
experience that will encourage repeated, prolonged, and self-
motivated use. 

Keywords— e-learning; attribute ranking; machine learning; 
online development,association rule mining. 

I.  INTRODUCTION  
Technology can help support effective teachers, by giving 

them new ways to design and provide personalized instruction 
to their students. More than 90% of all teachers in a recent 
Harris Interactive survey indicated that “they would like to use 
more education technology in the classroom than they do 
now” (Harris Interactive, 2013); 

In the recent past, there has been a significant growth in 
the use of the ML techniques to seek knowledge in the area of 
higher education. Functionalities such as: student 
performances prediction [3-5, 7], student behaviour modelling 
[6], mediation of student e-discussions [8], student retention 
[9, 10] and other data mining applications have been 
established and researched into, with reference to the e-
learning systems.  

E-learning systems provide multiple ways of learning 
(self-paced, collaborative, synchronous & asynchronous, 
tutorial-based, homework, etc.) and incorporate numerous 
interactive online activities such as forums, quizzes, lessons, 
blogs, assignments, surveys, glossaries, wiki and workshops 
[11].  Most of these LMS maintain a comprehensive log of 
user interaction and assessment data. The use of this student 

learning and engagement data can greatly drive decision-
making and continuous improvement of courses in the digital 
landscape. It can provide improved selection of online 
activities and better organization of the courseware to support 
student learning.  

The seminal objectives of this paper is to highlight the 
usage of student interaction log from the LMS to identify 
effectiveness of courseware activities in fulfilling the learning 
outcome of a course and garnering optimized students’ 
performances.  The paper discusses the use of Feature 
Selection techniques with the combination of Association Rule 
Mining within the context of Education Data Mining to rank 
significant course activities and identify more noteworthy 
relationships amongst these attributes. Engagement data from 
a generic course from the University of the South Pacific is 
used to demonstrate the concept. Instructional designers can 
use this knowledge when designing courses, improve the 
structure of course content, appropriately weight assessment 
tasks and use the data to provide prompts for students to 
improve their learning experience. 

A. ELearning at The University of the South Pacific 

 The University of the South Pacific (USP) was set up in 
the South Pacific region in 1968 by its 12 member countries - 
Cook Islands, Fiji Islands, Kiribati, Marshall Islands, Nauru, 
Niue, Samoa, Solomon Islands, Tokelau, Tonga, Tuvalu and 
Vanuatu. A total of 14 campuses are spread over an area of 30 
million square kilometers of the Pacific Ocean. Due to this 
geographical separation, the university is expected to take its 
products and services to the doorstep of each and every 
household in the USP region [13]. This has resulted in a 
pedagogical shift from traditional face-to-face or chalk-and-
talk to more flexible learning modes of delivery. Even though 
the print-based has been the preferred mode of delivery, the 
low pass rates have prompted the educational practitioners to 
shift emphasis to blended and fully online modes [12]. 

While, the blended and fully online courses are seen as 
being cost-effective, scalable, innovative, student and learning 
centered, flexible scheduling of student activities, attracting 
huge student enrolments and providing students an equal 
platform, a couple of problems they inherently face are the 
lack of self-motivation and irregular participation resulting in 
excessive number of unfinished tasks late in the course. As a 
consequence, many students fail the courses offered through 
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these delivery modes. Therefore, there is a genuine need to 
evaluate and validate the curriculum and assessment design to 
lay the groundwork for a more effective learning process [12]. 
The knowledge acquired from this research can be used to 
highlight activities that significantly improve the students’ 
ability to pass the course. Such activities could be emphasized 
as they add-value to the course while the insignificant 
activities can be re-examined for its suitability for the context 
and courseware designers can re-visit its integration 
methodology. 

II. FEATURE SELECTION TECHNIQUE 
Feature selection is an active field in computing science. It 

has been a fertile field of research and development since 
1970s in statistical pattern recognition [15], machine learning 
and data mining [13, 16, and 17]. Feature selection is a 
fundamental problem in many different areas, especially in 
forecasting, bioinformatics, document classification, and 
object recognition or in modeling of complex technological 
processes and behaviour [18]. Datasets with thousands of 
features are not uncommon in such applications. All features 
may be important for some problems, but for some target 
concepts, only a small subset of features is usually relevant. 

A similar dilemma is faced by the instructional designers 
and course coordinators in this ever-changing e-learning 
landscape. The e-learning system provides as spectrum of 
activities and tools that can be integrated within the LMS 
platform (about 25 different types of activities are available in 
Moodle [11]). When designing online courses, instructors 
have to evaluate their courses and choose the most appropriate 
technical and pedagogical tools/activities for their course 
offering. The challenge is to create a correct mix of learning 
activities that employ different strategies for attaining the 
expected learning outcomes of the course. In doing so, they 
should be able to appeal to the different learning styles that are 
present in the student population. By just having the same 
types of activities in all courses in the same mode of offering 
may not be effective within and across disciplines. Another 
very important factor to determine is which online courseware 
is most suitable for courses placed at different levels in a 
programme. 

 In the context of our university, another common problem 
in offering online courses is slower dial-up speeds at home, 
especially for those rural students enrolled in online distance-
learning courses. These students cannot take courses 
effectively unless instructors scale back course activities 
accordingly. Thus, the correct exploitation of feature selection 
techniques of ML can be used to highlight most successful 
courseware activities in such environment. The feature 
selection approach can also drastically reduce the variety of 
activities available in the LMS and help identify and eliminate 
redundant, irrelevant, or insignificant courseware. 

A. Feature Selection Process 

It is possible to derive the general architecture from most 
of the feature selection algorithms. It consists of four basic 
steps (refer to Fig. 1); subset generation, subset evaluation, 
stopping criterion, and result validation [14]. The feature 
selection algorithms create a subset, evaluate it, and loop until 

an ending criterion is satisfied. Finally, the subset found is 
validated by the classifier algorithm. 

 
Figure 1. Overview of Feature Selection Process. 

A. Subset Generation  

 Subset generation is a search procedure that evaluates a 
subset of features as a group for suitability. Evaluation of the 
subsets requires a scoring metric that grades a subset of 
features. The total number of candidate subsets is 2N, where N 
is the number of features in the original data set. Having to 
exhaustively search through the feature space with even 
moderate N is infeasible.  Non-deterministic search like 
evolutionary search or the use heuristic search methods can be 
used to build the subsets. There are two main families of these 
methods: forward addition (starting with an empty subset, we 
add features after features by local search) or backward 
elimination (which is based on elimination of features). 

B. Subset Evaluation  

In Subset evaluation, each candidate subset generated 
needs to be evaluated and compared with the previous best 
one according to a certain evaluation criterion. If a new subset 
turns out to be better, it replaces the previous best subset. The 
process evaluation is repeated until a given stopping criterion 
is satisfied.  

The evaluation procedure used can be divided into 
wrapper and filter methods. In the wrapper method, classifier 
algorithm usually wrapped in a loop, whereas, in filter
methods does not rely on the classifier algorithm, but uses 
other criteria based on correlation notions. 

C. Stopping Criteria  

Unless there is a suitable stopping criterion, the feature 
selection process will run exhaustively. The process may be 
tuned to stop under one of the following reasonable criteria: 
(1) once a predefined number of features are identified, (2) a 
predefined number of iterations have been reached, (3) in case 
addition (or elimination) of feature fails to produce a better 
subset, (4) an optimal subset as per the evaluation criterion is 
obtained. 
 
D. Validation  

The selected best feature subset needs to be validated by 
carrying out different tests on both the selected subset and the 
original set either by using artificial and/or real-world datasets. 



III. FEATURE RANKING AND SELECTION 
Diverse feature ranking and feature selection techniques 

have been proposed in the machine learning literature. The 
purpose of these techniques is to discard irrelevant or 
redundant features from a given feature vector. For the 
purpose of this experiment, we used feature ranking and 
selection methods with two basic steps of general architecture: 
subset generation and subset evaluation for ranking the feature 
in the dataset.  

In this paper, we consider the filter methods to evaluate the 
ranking. The following practical and commonly used 
statistical and entropy-based measures have been selected 
based on its good performance in various domains: 

Information Gain (IG), 
Gain Ratio (IGR), 
Symmetrical Uncertainty (SU) , 
Relief-F (RF) attribute evaluation, 
One-R (OR) attribute evaluation, 
Chi-Squared (CS) attribute evaluation. 

 

Entropy is commonly used in the information theory 
measure [19], which characterizes the purity of an arbitrary 
collection of examples. It is in the foundation of the IG, IGR, 
and SU attribute ranking methods. The entropy measure is 
considered a measure of the system’s unpredictability. The 
entropy of Y is calculated as: 
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where p(y) is considered the marginal probability density 
function for the random variable Y. If the observed values of Y 
in the training data set S are partitioned according to the values 
of a second feature X, the entropy of Y after observing X is 
then computed as: 
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where p(y|x) is the conditional probability of y given feature x. 
If the entropy of Y with respect to the partitions induced by X
is less than the entropy of Y prior to partitioning, then we can 
conclude that there is a relationship between features Y and X. 

A. Information Gain 

Information Gain (IG) evaluates attributes by measuring 
their information gain with respect to the class. It discretises 
numeric attributes first using the MDL-based discretisation 
method. 
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where H is the information entropy. IG is a widely used 
standard feature selection method but it does not take into 
account feature interaction. 
 

B. Gain Ratio 

The Gain Ration (GR) evaluates attributes by measuring 
their gain ratio with respect to the class. It is calculated by 
dividing the original information gain by the information 
value of the attribute.
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In opposition to IG, IGR favours variables with fewer 
variables. 
 

C. Symmetrical Uncertainty 

 Symmetrical Uncertainty (SU) compensates for the IG’s 
bias toward features with more values and normalizes its 
values within the range [0, 1] with the value 1 indicating that 
knowledge of either one of the values completely predicts the 
value of the other and the value 0 indicating that X and Y are 
independent.  
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D. Chi-Squared 

Feature Selection via chi-squared ( 2) test is another, very 
commonly used method [20].The 2 method evaluates features 
individually by measuring their chi-squared statistic with 
respect to the class. The initial hypothesis H0 is the assumption 
that the two features are unrelated, and it is tested by chi-
squared formula: 
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where Oij is the observed frequency and Eij is the expected 
(theoretical) frequency, asserted by the null hypothesis. The 
greater the value of 2, the greater the evidence against the 
hypothesis H0 is. 
 

E. One-R 

One-R (OR) is a simple algorithm proposed by Holte [21]. 
It builds one rule for each attribute in the training data and 
then selects the rule with the smallest error. It works with 
continuous values and thus uses a straightforward method to 
divide the range of values into several disjoint intervals.  

This is one of the most primitive schemes. It produces 
simple rules based on one feature only. Although it is a 
minimal form of classifier, it can be useful for determining a 
baseline performance as a benchmark for other learning 
schemes. 

F. Relief-F 

Relief-F (RF) attribute evaluation a simple yet efficient 
procedure to estimate the quality of attributes in problems with 
strong dependencies between attributes. The key idea of the 
Relief-F is to estimate the quality of attributes according to 
how well their values distinguish between instances that are 
near to each other. 

The weight computation is based on the probability of the 
nearest neighbors from two different classes having different 
values for a feature and the probability of two nearest 
neighbors of the same class having the same value of the 
feature. The higher the difference between these two 
probabilities, the more significant is the feature.  

 



A. Validation of Ranking Technique 

In order to validate the results for each of the ranking 
algorithm, four commonly used supervised learning 
algorithms are adopted. These are, namely, IB1, Naive Bayes, 
C4.5 decision tree and the radial basis function (RBF) 
network.  

IB1 is a nearest neighbour classifier. It uses normalized 
Euclidean distance to find the training instance closest to the 
given test instance, and predicts the same class as the training 
distance. The advantage of IB1 is that they are able to learn 
quickly from a very small dataset. Naïve Bayes is a simple 
probabilistic classifier based on the elementary Bayes, 
Theorem. The advantage of Naive Bayes classifier is that it 
requires a small amount of training data to estimate the 
parameters (means and variances of the variables) necessary 
for classification. C4.5 is an algorithm used to generate a 
decision tree using the concept of information entropy. C4.5 
decision tree has various advantages. It is simple to understand 
and interpret, requires little data preparation, is robust, and 
performs well with large data in a short time. Radial Basis 
Function (RBF) network is an artificial neural network that 
uses radial basis functions as activation functions. It has many 
uses, including function approximation, time series prediction, 
classification, and system control [22]. RBF network offers a 
number of advantages, including requiring less formal 
statistical training, ability to implicitly detect complex 
nonlinear relationships between dependent and independent 
variables, ability to detect all possible interactions between 
predictor variables, and the availability of multiple training 
algorithms. 

IV. ASSOCIATION RULE MINING 
Association mining is one of the most well studied methods 

in data mining [24] [25]. It has served as a useful tool for 
discovering correlated items in a large transactional database. 
It produces if-then statements concerning attribute-values. An 
association rule X  Y expresses that in those transactions in 
the database where X occurs; there is a high probability of 
having Y as well. X and Y are called the antecedent and 
consequent of the rule. The strength of such a rule is measured 
by its support and confidence. The support of the rule is the 
percentage of transactions in the database that contain both the 
antecedent and the consequent. The confidence of the rule is 
the percentage of transactions with X in the database that 
contain the consequent Y also. 

Association rule mining has been applied to e-learning 
systems for traditional association analysis such as building 
recommender agents for on-line learning activities, 
automatically guiding the learner’s activities and intelligently 
generate and recommend learning materials, finding out the 
relationships between each pattern of learner’s behavior, 
identifying attributes characterizing patterns of performance 
disparity between various groups of students. 

A problem experienced with association rule mining 
algorithms traditionally was that it normally discovers a huge 
quantity of rules and thus do not guarantee that all the rules 
found are relevant. With the incorporation of the 
aforementioned feature selection technique, the rules 

generated are more specific and demonstrate improved 
confidence. 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 
To validate the ML approach to courseware evaluation, 

real dataset from a large university-wide course, UU100, was 
selected for experimentation. Six (6) different feature ranking 
and feature selection methods were used on the specified 
dataset to obtain the ranking of the courseware activities. 
Being able to correctly rank the activities is central to our 
research objective. Thus, to validate the ranking, four (4) 
widely used ML algorithms were used to confirm the 
rationalization of the selected courseware activities and how it 
significantly contributed towards student success in the 
course. 

A. UU100 Dataset  
UU100, Communication and Information Literacy, was 

delivered in Blended Mode (20% face-to-face and 80% 
Online) via Moodle LMS platform in Semester 2, 2012. The 
course had 2,172 students enrolled and incorporated many 
online activities such as weekly discussion forums, glossary, 
resources, quizzes, chat, blog and surveys, etc. Moodle, the 
LMS used by the university, logged every click that students 
make for navigational purposes and has a modest log viewing 
system built into it (Fig. 2). 

 
Figure 2. A screenshot of the Moodle log report for UU100. 

 
 

The log report within the LMS show summarized student 
statistics; however, there is still provision for further 
evaluation of these data to ascertain undiscovered knowledge. 
Activity reports for all students are available and details about 
each module (last access, number of times read, etc.) as well 
as the detailed involvement are clearly highlighted. However, 
the mere raw interaction counts do not suggest the 
effectiveness of the courseware within the course. 

To derive usefulness from the user log and to extract the 
behavioral data embedded within it, some of the attribute 
values were aggregated. Table I lists the 26 different attributes 
extracted/aggregated for each student from the log table of the 
course. 
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also quite high. Rule 4, for example, states that having a high 
value for DistQuizAttempts is a behaviour that could 
significantly contribute towards achieving a pass in the course. 
Similar proposition is also demonstrated by Rule 5.  It also 
unveils that not all the highly significant activities have to be 
completed in order to achieve success in the course.  For 
instance, if a student is lacking in certain activities, being able 
to identify the correct supplementing activity can assist in 
achieving success. Recommendation system platforms can be 
based on this notion. Comparison of rules and their confidence 
reveals interesting knowledge. For instance, comparing Rule 3 
and 4 suggests that distinct Assignment activities are more 
effective in the course compared to the Quiz activities. This 
inference is also supported in Table I by the MV scheme.    
 The author heralds the fact that the use of Machine 
Learning tools can be particularly useful in developing new 
and revising existing online courses. The approach is able to 
provide valuable insight in the effective practices within the 
course. It also means that the online course development and 
revision will no longer be left to chance and philosophical 
beliefs but rather based on proven performances. Instructional 
Designers during the planning process in course development 
can be much better informed when developing similar courses 
for optimized delivery.  Ranking of courseware items can also 
serve a platform for future recommender system development. 

VI. CONCLUSION  
In this paper, the effectiveness of ML technique in 

evaluating and improving curriculum design is discussed. 
With the abundance of data now available at our disposal and 
the emerging shift towards MOOCs and mobile learning 
means employing such approaches will become critical in 
terms of conceptualizing and delivering the right type of 
instructions and activities to the students. 

 The choice of activities and assessments will differ from 
course to course and discipline to discipline. However, the 
proposed method of using user generated data  (as used in 
other matured domains) will play a pivotal role in educational 
institutions to validate the curriculum and assessment design 
and lay the groundwork for a more effective learning process 
for its diverse audience.  
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